S-Transform Applied to Laser Doppler Flowmetry Reactive Hyperemia Signals [Електронний ресурс] / Said Assous, Anne Humeau, Maylis Tartas и др. // IEEE Transactions on Biomedical Engineering [Електронний ресурс]. – 2006. – № 6. – Pp. 1032 – 1037
- Електронна версія (pdf / 695 Kb)
Статистика використання: Завантажень: 8
Складова документа:
IEEE Transactions on Biomedical Engineering [Електронний ресурс] : вестник ин-та радиоинженеров. № 6. 53 / IEEE Engineering in medicine and Biology Group // IEEE Transactions on Biomedical Engineering. – USA, 2006
Анотація:
Laser Doppler flowmetry signals give information about many physiological activities of the cardiovascular system. The activities manifest themselves in rhythmic cycles. In order to
explore these activities during the reactive hyperemia phenomenon, a novel time-frequency method, called the S-transform, based on a scalable Gaussian wavelet, is applied. The goal is to have a deeper understanding of reactive hyperemia. This paper
focuses on the evaluation of the different activities between a rest signal and an hyperemia signal, both acquired simultaneously on the two forearms of healthy subjects. The results show that after the release of the occlusion, the myogenic, neurogenic, and
endothelial related activities clearly increase on the forearm where the occlusion took place. Then, they return progressively to their basal level. However, on the rest forearm, no increase is noted for the three activities. The mechanisms that take place during reactive hyperemia are, therefore, local. The S-transform p
explore these activities during the reactive hyperemia phenomenon, a novel time-frequency method, called the S-transform, based on a scalable Gaussian wavelet, is applied. The goal is to have a deeper understanding of reactive hyperemia. This paper
focuses on the evaluation of the different activities between a rest signal and an hyperemia signal, both acquired simultaneously on the two forearms of healthy subjects. The results show that after the release of the occlusion, the myogenic, neurogenic, and
endothelial related activities clearly increase on the forearm where the occlusion took place. Then, they return progressively to their basal level. However, on the rest forearm, no increase is noted for the three activities. The mechanisms that take place during reactive hyperemia are, therefore, local. The S-transform p